Expression of respiratory syncytial virus-induced chemokine gene networks in lower airway epithelial cells revealed by cDNA microarrays.
نویسندگان
چکیده
The Paramyxovirus respiratory syncytial virus (RSV) is the primary etiologic agent of serious epidemic lower respiratory tract disease in infants, immunosuppressed patients, and the elderly. Lower tract infection with RSV is characterized by a pronounced peribronchial mononuclear infiltrate, with eosinophilic and basophilic degranulation. Because RSV replication is restricted to airway epithelial cells, where RSV replication induces potent expression of chemokines, the epithelium is postulated to be a primary initiator of pulmonary inflammation in RSV infection. The spectrum of RSV-induced chemokines expressed by alveolar epithelial cells has not been fully investigated. In this report, we profile the kinetics and patterns of chemokine expression in RSV-infected lower airway epithelial cells (A549 and SAE). In A549 cells, membrane-based cDNA macroarrays and high-density oligonucleotide probe-based microarrays identified inducible expression of CC (I-309, Exodus-1, TARC, RANTES, MCP-1, MDC, and MIP-1 alpha and -1 beta), CXC (GRO-alpha, -beta, and -gamma, ENA-78, interleukin-8 [IL-8], and I-TAC), and CX(3)C (Fractalkine) chemokines. Chemokines not previously known to be expressed by RSV-infected cells were independently confirmed by multiprobe RNase protection assay, Northern blotting, and reverse transcription-PCR. High-density microarrays performed on SAE cells confirmed a similar pattern of RSV-inducible expression of CC chemokines (Exodus-1, RANTES, and MIP-1 alpha and -1 beta), CXC chemokines (I-TAC, GRO-alpha, -beta, and -gamma, and IL-8), and Fractalkine. In contrast, TARC, MCP-1, and MDC were not induced, suggesting the existence of distinct genetic responses for different types of airway-derived epithelial cells. Hierarchical clustering by agglomerative nesting and principal-component analyses were performed on A549-expressed chemokines; these analyses indicated that RSV-inducible chemokines are ordered into three related expression groups. These data profile the temporal changes in expression by RSV-infected lower airway epithelial cells of chemokines, chemotactic proteins which may be responsible for the complex cellular infiltrate in virus-induced respiratory inflammation.
منابع مشابه
Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells.
Respiratory syncytial virus (RSV) is one of the most common viral pathogens causing severe lower respiratory tract infections in infants and young children. Infected host cells detect and respond to RNA viruses using different mechanisms in a cell-type-specific manner, including retinoic acid-inducible gene I (RIG-I)-dependent and Toll-like receptor (TLR)-dependent pathways. Because the relativ...
متن کاملCigarette smoke condensate enhances respiratory syncytial virus-induced chemokine release by modulating NF-kappa B and interferon regulatory factor activation.
Exposure to cigarette smoke is a risk factor contributing to the severity of respiratory tract infections associated with respiratory syncytial virus (RSV). Stimulation of airway epithelial cells by either RSV or cigarette smoke condensate (CSC) has been shown to induce secretion of the proinflammatory chemokines. However, the effect of coexposure of airway epithelial cells to CSC and RSV on in...
متن کاملRespiratory syncytial virus and TNFalpha induction of chemokine gene expression involves differential activation of Rel A and NF-kappaB1
BACKGROUND Respiratory syncytial virus (RSV) infection of airway epithelial cells stimulates the expression and secretion of a variety of cytokines including the chemotactic cytokines interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and RANTES (regulated upon activation, normal T cell expressed and secreted). Chemokines are important chemoattractants for the recruitment of dist...
متن کاملTSLP from RSV-stimulated rat airway epithelial cells activates myeloid dendritic cells.
The respiratory syncytial virus (RSV) is a primary cause of lower respiratory tract infections in children, the elderly and in people who are immune suppressed, and is also the cause for the development of asthma primarily in infants. However, the immunological mechanisms by which RSV enhances allergic sensitization and asthma remain unclear. The aim of this study was to examine the influence o...
متن کاملCell-specific expression of RANTES, MCP-1, and MIP-1alpha by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus.
Respiratory syncytial virus (RSV) is the major cause of acute bronchiolitis in infancy, a syndrome characterized by wheezing, respiratory distress, and the pathologic findings of peribronchial mononuclear cell infiltration and release of inflammatory mediators by basophil and eosinophil leukocytes. Composition and activation of this cellular response are thought to rely on the discrete target c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 75 19 شماره
صفحات -
تاریخ انتشار 2001